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Abstract— The rapid evolution of Internet of Vehicles (IoVs) 

technologies has ushered in an era of connected transportation, 

which has enabled us to collect and analyze data at an 

unprecedented scale. However, the vast amount of data generated 

by IoVs poses significant privacy and security challenges, as they 

may be susceptible to leakage and manipulation by malicious 

attackers. In this work, we explore the integration of emerging 

blockchain technology with federated learning to create a secure 

and decentralized framework for IoV data management and 

analysis. The proposed system leverages the immutable and 

transparent nature of blockchain to ensure data integrity and 

trust among IoV nodes, while federated learning facilitates 

collaborative machine learning without compromising individual 

data privacy. Through a combination of cryptographic techniques 

and consensus mechanisms, the blockchain-enabled federated 

learning system aims to thwart adversarial attacks, ensure secure 

data aggregation, and enhance the overall resilience of IoV 

networks. This study presents a comprehensive architecture, 

evaluates its performance through simulations, and demonstrates 

its potential in mitigating security risks in IoV environments. The 

findings highlight the feasibility and effectiveness of this approach, 

paving the way for more robust and secure IoV systems.  
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I. INTRODUCTION 

In recent years, Internet of Things (IoT) has exploded in 

popularity, not just in the consumer market but other niches like 

vehicular networks, such as the Internet of Vehicles (IoV), and 

industrial applications, such as the Industrial Internet of Things 

(IIoT) [1]. The Internet of Vehicles (IoV) is transforming the 

transportation sector by facilitating seamless communication 

and data exchange among vehicles, infrastructure, and other 

networked devices. Key applications include real-time traffic 

monitoring, accident response systems, and dynamic routing. 

However, the extensive connectivity and data sharing in IoV 

networks also introduced significant security and trust 

challenges, which may include potential data breaches, 

unauthorized access, and cyberattacks that can compromise both 

personal and vehicular safety.  

Traditional centralized data processing models are 

increasingly inadequate for addressing these security and trust 

issues in IoVs due to their vulnerability to single points of 

failure, scalability issues, and the heightened risk of large-scale 

data breaches. In contrast, Federated learning (FL) emerges as a 

promising decentralized approach to machine learning that 

keeps data localized on individual devices, thereby enhancing 

privacy and reducing the risk of data exposure [2]. Despite its 

advantages, federated learning faces several challenges, 

including the secure aggregation of model updates, maintaining 

the trustworthiness of participating nodes, and defending against 

adversarial attacks. For example, malicious nodes might attempt 

to corrupt the global model through data poisoning attacks by 

sending inverted model parameters [3]. They could also seek to 

gain disproportionate control over the global model through 

model replacement attacks [3]. Therefore, it is essential to 

implement additional security measures. 

Since Bitcoin’s inception in 2009, blockchain technology 

has attracted a lot of attention mainly because of its 

decentralized, transparent, and immutable nature [4]. 

Blockchain technology provides a robust and effective solution 

to enhance federated learning. By leveraging blockchain, a 

secure and tamper-proof system can be established to manage 

and verify the contributions of each node in the federated 

learning process. This integration ensures data integrity, fosters 

trust among participants, and significantly bolsters the overall 

security of the IoV network. 

In this research, we aim to design, implement, and evaluate 

a blockchain-enabled federated learning system named BlockFL, 

which is specifically tailored to address the security and privacy 

needs of IoVs. By combining the strengths of blockchain and 

federated learning, this project seeks to develop a resilient 

framework that can securely handle the vast amounts of data 

generated by IoVs, protect against cyber threats, and maintain 

user privacy.  

The main contributions of this work are listed as follows. 

i. We proposed and implemented a novel system 

combining federated learning and blockchain to 

enhance the security of the IoVs. 

ii. We increase the level of decentralization in federated 

learning while also maintaining sufficient coordination 

and validation through the application of a blockchain 

design. 

iii. To compare how well models generated by federated 

learning perform with an increasing number of clients, 

as well as to models developed via a traditional, 

centralized system, we conduct a series of experiments, 

the results of which indicate federated learning models 

are on par with non-federated counterparts.  
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The remainder of this article is organized as follows. Section 

II covers some existing works that are related to this research. 

Section III details the design of our proposed BlockFL system. 

In Section IV, we present and analyze the results from a variety 

of experiments of our system and compare it to a baseline model. 

Finally, Section V discusses some of the limitations and possible 

future directions of our study and concludes this paper. 

II. RELATED WORKS 

In recent years, there have been numerous research efforts 

which aim at enhancing the security of various IoT systems. 

Zhang et al. [5] attempt to enhance the trust and security of 

the Internet of Things being uploaded to the cloud by 

implementing a blockchain with an alliance chain, which is used 

to support the central authority by allowing other nodes to assist 

the central authority in making partial private keys. This was 

done to reduce the bottleneck around only having one central 

authority and the security issues with one node holding all the 

private keys of all the users in the blockchain. They use 

anonymity when interacting with the blockchain to protect user 

privacy and found that their scheme outperformed the standard 

means for cloud-based sharing of IoT data such as attribute-

based encryption.  

In [6], a trust management system based on blockchain is 

used to help manage the high level of complexity, volume, and 

mobility issues when using the Internet of Vehicles network. 

The Internet of Vehicles network is a network of vehicles with 

sensors that can share information between vehicles. The 

authors use Bayesian Inference to generate a “judgment”, or a 

summary of all messages a query vehicle has received. By using 

this, messages deemed to have low credibility will have less 

influence on the judgment generated, resulting in a more 

accurate judgment. Lastly, they use a combined consensus 

mechanism so that vehicles with the largest change in trust have 

priority when updating the blockchain. 

Li and Song studied an attack-resistant trust management 

scheme (ART) for Vehicular ad hoc networks (VANETs) [7], 

which is able to detect and cope with malicious attacks and also 

evaluate the trustworthiness of both data and mobile nodes in 

VANETs. More specifically, the trustworthiness of a node is 

evaluated in two separate dimensions, namely functional trust 

and recommendation trust, which indicate how likely a node can 

fulfill its functionality and how trustworthy the 

recommendations from a node for other nodes will be. 

In [8], an AI-enabled trust management system (AIT) was 

proposed for vehicular networks using the blockchain 

technology. In the AIT system, each vehicle senses, generates, 

and exchanges traffic related messages with other vehicles, and 

these messages will then get validated by the neighboring 

vehicles. As vehicles process messages from nearby vehicles, 

they will establish and update the trust relationship of those 

vehicles, which is enabled by utilizing the deep learning 

algorithm. Once a vehicle identifies untrustworthy vehicles, it 

reports them to the nearby roadside unit (RSU), and the RSU 

will validate the authenticity of the report as well as the identity 

of the vehicle by using the blockchain technology. 

In [9], a protocol called SAFELearning is designed to 

mitigate data poisoning attacks during the aggregation phase of 

federated learning. This technique involves randomly 

partitioning participating nodes into one-time subgroups, 

ensuring that nodes within a subgroup are unaware of the other 

members in that group. The parameters from each subgroup are 

then recursively aggregated into the global model. Partial 

Parameter Disclosure (PPD) is employed to detect anomalies 

within the aggregated parameters of a subgroup, thereby 

identifying instances of poisoning attacks. 

Vucovich et al. also address data poisoning attacks using 

Bayesian statistics in their method called FedBayes [10]. This 

approach calculates the mean and standard deviation for 

parameters in each layer of the global model, creating a normal 

distribution from these values. The probability of each client's 

parameters is then calculated using this distribution to assess 

their influence on the global model. Clients whose parameters 

show significant deviations from the previous global model are 

flagged as potentially malicious, and their influence is reduced 

during the aggregation process. 

In [11], compressed sensing (CS) is explored as a method for 

more efficient and secure aggregation, particularly for 

environment sensing capability (ESC) nodes. A CS-based 

spreading algorithm is employed by all nodes to transmit 

information, resulting in a superimposed signal that obscures the 

data from individual nodes, thus protecting their privacy against 

eavesdropping attacks. However, while this approach enhances 

privacy, it does not adequately address poisoning attacks or the 

secure storage of model parameters.    

III. OVERVIEW OF THE BLOCKFL SYSTEM 

One of the main novelties of our system lies within the 

seamless connection between federated learning and 

blockchain. Our system’s overall workflow is shown in Fig. 1.  

 

 
Fig. 1. BlockFL System workflow 



There are two general layers – the local/client layer and the 

server layer. These two layers correspond to the general 

federated learning framework, where there are multiple local 

models that each exist on devices at the source of the data, and 

a central federated server that collects these local models and 

aggregates them into a global model. In this work, the local 

models are located at the client layer and the global model is 

located at the server layer. The server layer itself is made up of 

two different modules, which are responsible for managing the 

global model and blockchain, respectively. Unlike traditional 

federated learning, where the federated server directly 

communicates with client devices to collect local models, our 

system leverages blockchain to store models from both clients 

and the global server. This approach enhances the security and 

trustworthiness of the entire process. 

Federated learning is typically a highly coordinated process, 

and our system is designed with several coherent steps to 

produce accurate and functional global models. Before training 

begins, each client and the global model are assigned unique 

identifiers. In the client layer, local models are trained on local 

data, and each client sends its model parameters to the 

blockchain, including its identifier in the transaction. These 

identifiers enable verification of the model parameters, allowing 

the originator of specific parameters to be traced back to a 

particular node and ensuring that the node is authorized to 

contribute. Once these parameters are recorded in a block, the 

global model retrieves them from the blockchain. The local 

parameters are then aggregated into a single set, forming the new 

global model. This updated global model, along with its 

identifier, is sent to the blockchain. This process ensures that 

parameters from both local clients and the global model can be 

verified. After the global model parameters are mined as a block, 

clients retrieve and apply them to their local models, replacing 

the local parameters with the global ones. As the global model 

is an aggregate of multiple local models, it is generally more 

accurate and better suited to a wider range of data, making it the 

preferred model for all clients. 

A. Blockchain Design 

In our system, the type of blockchain  that we use is a private 

blockchain. A private blockchain still uses the idea of distributed 

ledgers, however, the participants that are allowed on the 

network can be controlled by some party, typically the 

administrators. This allows for the greater coordination that 

federated learning requires. For example, local devices can be 

verified before being allowed to participate in training, 

something common in most federated learning schemes. Yet, the 

decentralized nature of blockchain is still somewhat preserved 

since nodes within the network each retain a copy of the ledger 

and cryptographic means are employed to avoid the tampering 

of this ledger, with multiple nodes still participating in validation 

and consensus.  

Our blockchain uses the Proof-of-Work (PoW) consensus 

protocol to reach an agreement and resolve conflicts about the 

ledger’s state. In this mechanism, miners compete to figure out 

the hash value of the next block, which involves determining a 

nonce value that when hashed with the data of the block, meets 

a certain PoW threshold. This threshold is usually defined as a 

certain number of zeros preceding the eventual final hash. The 

process of finding the hash of the next block is illustrated in Fig. 

2 [12]. Upon finding a correct solution, other nodes in the 

network verify the solution by applying the hash function with 

the nonce provided, and if verified, the miner who determined 

the nonce obtains the right to append the block to the chain along 

with a reward [13]. Determining a correct nonce and hash value 

is computationally expensive, so it makes it unlikely that any 

one node can control the whole blockchain and maliciously alter 

past transactions.  

In our blockchain, if a chain starts to diverge, meaning 

multiple different versions of the same chain start to emerge, the 

longest chain that has been validated is chosen as the correct 

chain, and all nodes replace their chain with this. Validation 

occurs in a similar way to how new blocks are validated before 

being added to the chain, with hashes being applied to check the 

validity of block data and nonces. 

 

 
Fig. 2. Determining block hash using PoW 

 

Our use of blockchain is not only designed to ensure the 

security and integrity of model parameters, it is also done to 

provide an archival history of local models and global models, 

having the added benefit of auditability. Previous versions of a 

global model can be accessed should there be a need, such as if 

the latest version’s performance is lacking and a previous 

version must be used instead. The parameters of local models 

are also recorded, so there is potential to verify whether a client 

is truly participating in local learning or sending fabricated 

model parameters to blockchain, adding another layer of 

verification to the entire process. 

B. The Details of the Deep Learning Algorithm 

The deep learning algorithm that we use in this work is the 

Convolution Neural Network (CNN). This algorithm is used to 

perform classification tasks, usually image recognition. Because 

they handle multidimensional data, CNNs are composed of 

multiple layers which are, more generally, the convolution, 

pooling, and fully connected layers. The input data first goes 

through the convolution layers where filters are applied to it to 

create an activation map. This map is fed to the pooling layer, 

which reduces the spatial dimensions of this activation map size, 

again, by applying filters, this time to condense regions of the 

activation map based on summary statistics. Finally, in the fully 

connected layer, the flattened data from the pooling layer is 

processed using a fully connected neural network, with multiple 

layers of connected neurons mapping the relationship between 

input and output [14]. A diagrammatic representation of this 

algorithm is shown in Fig. 3 [15].   

   



 
Fig. 3. Typical CNN architecture 

 

The dataset we use in our experiments is the Modified 

National Institute of Standards and Technology (MNIST) 

dataset [16], which is composed of handwritten digits from 0 to 

9. A total of 49,800 samples were used for training, 10,200 for 

validation, and 10,000 for testing. Being images, we used a 2-

Dimensional CNN model to process the data. 

C. Attack Model and Mitigation 

We have taken the following cyber attacks into consideration 

when designing and developing our proposed BlockFL system.  

1. Data poisoning attacks, where malicious nodes inject 

false data to corrupt the global model [3], are mitigated 

through the immutable audit trail provided by the 

blockchain, enabling collective verification and 

rejection of anomalies. 

2. Model replacement attacks, where a node attempts to 

control the global model [3], are countered by the 

decentralized ledger and Proof-of-Work consensus 

mechanism, making it impractical for any single node 

to manipulate the model. 

3. Eavesdropping on the communication channels [17], 

which is generally common in wireless networks, are 

addressed by keeping data on local devices and only 

transmitting model parameters, with the blockchain 

providing secure, tamper-proof storage and controlled 

access, thus enhancing security and privacy protection 

compared to the traditional centralized systems. 

IV. EXPERIMENTAL STUDY 

A. Experimental Setup 

The Python PyTorch library was used to implement CNNs 

in our experiment. Client nodes and the server’s Global Model 

were both run on the Google Colab, and they were run on a 

dedicated VM in Google Compute Engine (GCE). The MNIST 

training data was divided by the number of total clients, and each 

client had some portion of the data loaded on to it. Each client 

was also assigned a unique ID. 

We constructed a Python class to implement our blockchain 

mechanisms, specifically using the hashlib library to implement 

SHA-256 hashes for block creation, validation, and conflict 

resolution using PoW. To allow the other components in our 

system to interface with the blockchain over network, we used 

Flask to develop an API to handle HTTP requests to the 

blockchain. Requests were formatted using JSON, which meant 

to ensure compatibility with the format, tensors containing 

model parameters needed to be converted into byte strings 

before being sent as transactions to the blockchain in the global 

model and local client’s code.  

Because the global model and blockchain exist on the same 

layer – the server layer – the global model is allowed to know 

more details about the blockchain than local clients, and gets to 

requests when a block should be mined upon certain conditions 

being met, similar to the way smart contracts work in Ethereum 

[18]. 

The code for our blockchain and API was hosted on Replit, 

which not only assigns a dedicated VM for it, but also a URL 

where HTTP requests can be made to the API. This allowed us 

to keep our API running live, and as a separate module/service 

from the global model, something that was necessary as model 

training and blockchain hosting cannot be done simultaneously 

in the same runtime environment. 

B. Experimental Results 

We ran six experiments with a different number of clients 

each time: a 2-, 4-, 8-, 16-, 32-, and 64-client test. For each 

experiment, 20 rounds of training were performed. From each 

experiment, we collected performance metrics of the aggregated 

global model, specifically its accuracy, loss, precision, recall, 

and F1 score during the validation. We also collected data about 

the communication overhead generated in each experiment, and 

the global model’s final performance on the test data at the end 

of the 20 rounds. For comparison purposes, we ran 20 rounds of 

training on a centralized CNN model using no federated learning 

as our baseline for comparison, helping us see the differences in 

training and performance between the regular machine learning 

and federated learning. 

Fig. 4 and 5 show the performance of the aggregated global 

model for each test compared with the baseline model. Table 1 

shows each final model’s performance on the test data. Fig. 6 

shows the communication overhead generated during each of 

our tests. 

 
Fig. 4. Loss and accuracy comparison  

 

 
Fig. 5. Precision, recall, and F1 score comparison 

 



TABLE I.  FINAL MODEL PERFORMANCES ON TEST DATA 

Model 
Performance Metrics 

Accuracy Loss Precision Recall F1 Score 

2-Client 0.9874 0.0372 0.9871 0.9878 0.9875 

4-Client 0.9873 0.0392 0.9873 0.9878 0.9875 

8-Client 0.9832 0.0536 0.9828 0.9834 0.9831 

16-Client 0.9771 0.0742 0.9769 0.977 0.977 

32-Client 0.9656 0.1165 0.9661 0.9659 0.966 

64-Client 0.9505 0.1853 0.951 0.9503 0.9506 

Baseline 0.9875 0.0441 0.9875 0.9878 0.9877 

 

 

 
Fig. 6. Communication overhead for each federated learning model 

 

These results show that even with an increasing number of 

clients, the federated learning model in our system still performs 

well. For all experiments, the global model was able to achieve 

a validation loss of 0.25 or less within 20 rounds of training, 

albeit slower than what it took the baseline to achieve such loss, 

with the 64-Client test’s final model having the largest loss 

during testing. These numbers are all generally comparable to 

the performance of the baseline model, with the 2-Client and 4-

Client models even slightly outperforming the baseline in terms 

of loss. It may take more rounds of training to reduce the loss as 

the number of clients increases, but this is still within a 

reasonable number of rounds. We also noticed, rather 

interestingly, that as the number of clients increases, the 

smoothness of all the curves also increases up to a certain 

threshold. Going from the baseline to the 8-client curves, the 

baseline model produced the “bumpiest” curve, however, 

beyond 8 clients, the curves start being bumpy again. This 

indicates that our system may be less susceptible to noise than a 

non-federated-learning-based system since by training and 

averaging multiple models, faults that a single model may have 

in its parameters will become less dominant. However, once data 

begins to be spread too thinly among the clients, noise may be 

reintroduced. 

Finally, the communication overheads increased as the 

number of clients increased. Looking at the breakdown of 

communication overhead, while the overhead generated by the 

server remained almost constant for each test, the client 

generated overhead increased dramatically, which in turn 

increased the total overhead for that test. In the real world where 

data may not be in the same place before training, there would 

still be communication overhead in transmitting data to the 

central server, which may be increased by the need for secure 

protocols. Even if our entire dataset was transmitted using the 

best lossless compression technique, which would achieve a 

compression ratio of 3:1 [19], it would still be 18 MB altogether, 

so we are assuming this as the minimum communication for our 

baseline. Therefore, we believe that the communication 

overhead of our federated learning models would still be better 

than the overhead incurred by transmitting the raw data instead. 

V.  CONCLUSION AND FUTURE DIRECTIONS 

In this work, we have compared our BlockFL system to a 

typical non-federated-learning-based system with respect to the 

model performance and the communication overhead. However, 

when it comes to security, we made the assumption that the 

inherent mechanisms of blockchain would ensure security of the 

data in our network, and that being a private blockchain, the 

clients and server would be verified to participate in the learning 

process beforehand. Yet, even with the use of federated learning 

and blockchain, security would still possibly remain an issue, 

and the proper measures must be taken to address it. 

Additionally, we have also made the assumption that 

mechanisms will be in place to enforce the proper coordination 

of server and clients which is required by the federated learning. 

While we manually coordinated some of the server and client 

activities in our work, further procedures are required to ensure 

the server and clients coordinate as intended in this process.  

To implement more robust security measure, some system 

that maintains a database of registered clients and asks clients to 

validate themselves before sending a transaction, whether that is 

a password or some other private key, can be used to prevent 

unwanted parties from sending the model transactions through 

the network. The server could also check the list of pending 

transactions and remove any that originates from the unwanted 

parties. In either case, however, this has implications on 

communication and computational overhead, as well as the 

decentralized nature of the blockchain. Because the global 

model has many privileges like checking the blockchain’s 

pending transactions and being able to decide when to mine a 

block, there must be extra measures taken to ensure only the 

global model can perform these actions, including validating 

that such requests originate from the global model in the first 

place. As for the future direction, we would like to integrate the 

aforementioned attacks into our experiments, and check how 

they affect the performance of the proposed approach. We 

would also like to experiment with a larger amount of client 

nodes to test the scalability of our system in schemes like IoVs. 

Thus, these issues remain open to future research. 

In summary, we proposed the BlockFL system, which 

integrates blockchain into federated learning. In this system, the 

global model and client essentially communicate their model 

parameters using the blockchain. The blockchain is used to store 

model parameters from both the global and local models during 



the coordinated federated learning process, providing a secure 

means of storage on top of the data privacy offered by not 

moving data from its source device. Additionally, it provides a 

means of archiving model parameters for purposes like reverting 

model versions or tracking client participation. Such an 

integration overall enhances the privacy of participating parties 

in a decentralized, transparent manner. To demonstrate the 

capabilities of the system, we implemented a prototyped system 

and conducted experiments comparing the performance of its 

ML model at differing numbers of clients, as well as to a non-

federated, baseline model. The results show that our system is 

able to maintain a solid performance even with an increasing 

number of participating client nodes, and performs comparably 

to a non-federated model, even overperforming the baseline in 

some instances.  
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