

BlockFL: A Blockchain-enabled Federated Learning

System for Securing IoVs

Abstract— The rapid evolution of Internet of Vehicles (IoVs)

technologies has ushered in an era of connected transportation,

which has enabled us to collect and analyze data at an

unprecedented scale. However, the vast amount of data generated

by IoVs poses significant privacy and security challenges, as they

may be susceptible to leakage and manipulation by malicious

attackers. In this work, we explore the integration of emerging

blockchain technology with federated learning to create a secure

and decentralized framework for IoV data management and

analysis. The proposed system leverages the immutable and

transparent nature of blockchain to ensure data integrity and

trust among IoV nodes, while federated learning facilitates

collaborative machine learning without compromising individual

data privacy. Through a combination of cryptographic techniques

and consensus mechanisms, the blockchain-enabled federated

learning system aims to thwart adversarial attacks, ensure secure

data aggregation, and enhance the overall resilience of IoV

networks. This study presents a comprehensive architecture,

evaluates its performance through simulations, and demonstrates

its potential in mitigating security risks in IoV environments. The

findings highlight the feasibility and effectiveness of this approach,

paving the way for more robust and secure IoV systems.

Keywords— Security, Blockchain, Federated Learning, IoV

I. INTRODUCTION

In recent years, Internet of Things (IoT) has exploded in

popularity, not just in the consumer market but other niches like

vehicular networks, such as the Internet of Vehicles (IoV), and

industrial applications, such as the Industrial Internet of Things

(IIoT) [1]. The Internet of Vehicles (IoV) is transforming the

transportation sector by facilitating seamless communication

and data exchange among vehicles, infrastructure, and other

networked devices. Key applications include real-time traffic

monitoring, accident response systems, and dynamic routing.

However, the extensive connectivity and data sharing in IoV

networks also introduced significant security and trust

challenges, which may include potential data breaches,

unauthorized access, and cyberattacks that can compromise both

personal and vehicular safety.

Traditional centralized data processing models are

increasingly inadequate for addressing these security and trust

issues in IoVs due to their vulnerability to single points of

failure, scalability issues, and the heightened risk of large-scale

data breaches. In contrast, Federated learning (FL) emerges as a

promising decentralized approach to machine learning that

keeps data localized on individual devices, thereby enhancing

privacy and reducing the risk of data exposure [2]. Despite its

advantages, federated learning faces several challenges,

including the secure aggregation of model updates, maintaining

the trustworthiness of participating nodes, and defending against

adversarial attacks. For example, malicious nodes might attempt

to corrupt the global model through data poisoning attacks by

sending inverted model parameters [3]. They could also seek to

gain disproportionate control over the global model through

model replacement attacks [3]. Therefore, it is essential to

implement additional security measures.

Since Bitcoin’s inception in 2009, blockchain technology

has attracted a lot of attention mainly because of its

decentralized, transparent, and immutable nature [4].

Blockchain technology provides a robust and effective solution

to enhance federated learning. By leveraging blockchain, a

secure and tamper-proof system can be established to manage

and verify the contributions of each node in the federated

learning process. This integration ensures data integrity, fosters

trust among participants, and significantly bolsters the overall

security of the IoV network.

In this research, we aim to design, implement, and evaluate

a blockchain-enabled federated learning system named BlockFL,

which is specifically tailored to address the security and privacy

needs of IoVs. By combining the strengths of blockchain and

federated learning, this project seeks to develop a resilient

framework that can securely handle the vast amounts of data

generated by IoVs, protect against cyber threats, and maintain

user privacy.

The main contributions of this work are listed as follows.

i. We proposed and implemented a novel system

combining federated learning and blockchain to

enhance the security of the IoVs.

ii. We increase the level of decentralization in federated

learning while also maintaining sufficient coordination

and validation through the application of a blockchain

design.

iii. To compare how well models generated by federated

learning perform with an increasing number of clients,

as well as to models developed via a traditional,

centralized system, we conduct a series of experiments,

the results of which indicate federated learning models

are on par with non-federated counterparts.

* Corresponding author: Dr. Wenjia Li (E-mail: wli20@nyit.edu)

Jawad Rahman, Charles Roeder, Oscar De La Cruz, Tyler Baudier, and Wenjia Li*

Department of Computer Science

New York Institute of Technology

New York, NY 10023, USA

{jrahma04, croeder, odelacru, tbaudier, wli20}@nyit.edu

979-8-3315-1778-6/24/$31.00 ©2024 IEEE

The remainder of this article is organized as follows. Section

II covers some existing works that are related to this research.

Section III details the design of our proposed BlockFL system.

In Section IV, we present and analyze the results from a variety

of experiments of our system and compare it to a baseline model.

Finally, Section V discusses some of the limitations and possible

future directions of our study and concludes this paper.

II. RELATED WORKS

In recent years, there have been numerous research efforts

which aim at enhancing the security of various IoT systems.

Zhang et al. [5] attempt to enhance the trust and security of

the Internet of Things being uploaded to the cloud by

implementing a blockchain with an alliance chain, which is used

to support the central authority by allowing other nodes to assist

the central authority in making partial private keys. This was

done to reduce the bottleneck around only having one central

authority and the security issues with one node holding all the

private keys of all the users in the blockchain. They use

anonymity when interacting with the blockchain to protect user

privacy and found that their scheme outperformed the standard

means for cloud-based sharing of IoT data such as attribute-

based encryption.

In [6], a trust management system based on blockchain is

used to help manage the high level of complexity, volume, and

mobility issues when using the Internet of Vehicles network.

The Internet of Vehicles network is a network of vehicles with

sensors that can share information between vehicles. The

authors use Bayesian Inference to generate a “judgment”, or a

summary of all messages a query vehicle has received. By using

this, messages deemed to have low credibility will have less

influence on the judgment generated, resulting in a more

accurate judgment. Lastly, they use a combined consensus

mechanism so that vehicles with the largest change in trust have

priority when updating the blockchain.

Li and Song studied an attack-resistant trust management

scheme (ART) for Vehicular ad hoc networks (VANETs) [7],

which is able to detect and cope with malicious attacks and also

evaluate the trustworthiness of both data and mobile nodes in

VANETs. More specifically, the trustworthiness of a node is

evaluated in two separate dimensions, namely functional trust

and recommendation trust, which indicate how likely a node can

fulfill its functionality and how trustworthy the

recommendations from a node for other nodes will be.

In [8], an AI-enabled trust management system (AIT) was

proposed for vehicular networks using the blockchain

technology. In the AIT system, each vehicle senses, generates,

and exchanges traffic related messages with other vehicles, and

these messages will then get validated by the neighboring

vehicles. As vehicles process messages from nearby vehicles,

they will establish and update the trust relationship of those

vehicles, which is enabled by utilizing the deep learning

algorithm. Once a vehicle identifies untrustworthy vehicles, it

reports them to the nearby roadside unit (RSU), and the RSU

will validate the authenticity of the report as well as the identity

of the vehicle by using the blockchain technology.

In [9], a protocol called SAFELearning is designed to

mitigate data poisoning attacks during the aggregation phase of

federated learning. This technique involves randomly

partitioning participating nodes into one-time subgroups,

ensuring that nodes within a subgroup are unaware of the other

members in that group. The parameters from each subgroup are

then recursively aggregated into the global model. Partial

Parameter Disclosure (PPD) is employed to detect anomalies

within the aggregated parameters of a subgroup, thereby

identifying instances of poisoning attacks.

Vucovich et al. also address data poisoning attacks using

Bayesian statistics in their method called FedBayes [10]. This

approach calculates the mean and standard deviation for

parameters in each layer of the global model, creating a normal

distribution from these values. The probability of each client's

parameters is then calculated using this distribution to assess

their influence on the global model. Clients whose parameters

show significant deviations from the previous global model are

flagged as potentially malicious, and their influence is reduced

during the aggregation process.

In [11], compressed sensing (CS) is explored as a method for

more efficient and secure aggregation, particularly for

environment sensing capability (ESC) nodes. A CS-based

spreading algorithm is employed by all nodes to transmit

information, resulting in a superimposed signal that obscures the

data from individual nodes, thus protecting their privacy against

eavesdropping attacks. However, while this approach enhances

privacy, it does not adequately address poisoning attacks or the

secure storage of model parameters.

III. OVERVIEW OF THE BLOCKFL SYSTEM

One of the main novelties of our system lies within the

seamless connection between federated learning and

blockchain. Our system’s overall workflow is shown in Fig. 1.

Fig. 1. BlockFL System workflow

There are two general layers – the local/client layer and the

server layer. These two layers correspond to the general

federated learning framework, where there are multiple local

models that each exist on devices at the source of the data, and

a central federated server that collects these local models and

aggregates them into a global model. In this work, the local

models are located at the client layer and the global model is

located at the server layer. The server layer itself is made up of

two different modules, which are responsible for managing the

global model and blockchain, respectively. Unlike traditional

federated learning, where the federated server directly

communicates with client devices to collect local models, our

system leverages blockchain to store models from both clients

and the global server. This approach enhances the security and

trustworthiness of the entire process.

Federated learning is typically a highly coordinated process,

and our system is designed with several coherent steps to

produce accurate and functional global models. Before training

begins, each client and the global model are assigned unique

identifiers. In the client layer, local models are trained on local

data, and each client sends its model parameters to the

blockchain, including its identifier in the transaction. These

identifiers enable verification of the model parameters, allowing

the originator of specific parameters to be traced back to a

particular node and ensuring that the node is authorized to

contribute. Once these parameters are recorded in a block, the

global model retrieves them from the blockchain. The local

parameters are then aggregated into a single set, forming the new

global model. This updated global model, along with its

identifier, is sent to the blockchain. This process ensures that

parameters from both local clients and the global model can be

verified. After the global model parameters are mined as a block,

clients retrieve and apply them to their local models, replacing

the local parameters with the global ones. As the global model

is an aggregate of multiple local models, it is generally more

accurate and better suited to a wider range of data, making it the

preferred model for all clients.

A. Blockchain Design

In our system, the type of blockchain that we use is a private

blockchain. A private blockchain still uses the idea of distributed

ledgers, however, the participants that are allowed on the

network can be controlled by some party, typically the

administrators. This allows for the greater coordination that

federated learning requires. For example, local devices can be

verified before being allowed to participate in training,

something common in most federated learning schemes. Yet, the

decentralized nature of blockchain is still somewhat preserved

since nodes within the network each retain a copy of the ledger

and cryptographic means are employed to avoid the tampering

of this ledger, with multiple nodes still participating in validation

and consensus.

Our blockchain uses the Proof-of-Work (PoW) consensus

protocol to reach an agreement and resolve conflicts about the

ledger’s state. In this mechanism, miners compete to figure out

the hash value of the next block, which involves determining a

nonce value that when hashed with the data of the block, meets

a certain PoW threshold. This threshold is usually defined as a

certain number of zeros preceding the eventual final hash. The

process of finding the hash of the next block is illustrated in Fig.

2 [12]. Upon finding a correct solution, other nodes in the

network verify the solution by applying the hash function with

the nonce provided, and if verified, the miner who determined

the nonce obtains the right to append the block to the chain along

with a reward [13]. Determining a correct nonce and hash value

is computationally expensive, so it makes it unlikely that any

one node can control the whole blockchain and maliciously alter

past transactions.

In our blockchain, if a chain starts to diverge, meaning

multiple different versions of the same chain start to emerge, the

longest chain that has been validated is chosen as the correct

chain, and all nodes replace their chain with this. Validation

occurs in a similar way to how new blocks are validated before

being added to the chain, with hashes being applied to check the

validity of block data and nonces.

Fig. 2. Determining block hash using PoW

Our use of blockchain is not only designed to ensure the

security and integrity of model parameters, it is also done to

provide an archival history of local models and global models,

having the added benefit of auditability. Previous versions of a

global model can be accessed should there be a need, such as if

the latest version’s performance is lacking and a previous

version must be used instead. The parameters of local models

are also recorded, so there is potential to verify whether a client

is truly participating in local learning or sending fabricated

model parameters to blockchain, adding another layer of

verification to the entire process.

B. The Details of the Deep Learning Algorithm

The deep learning algorithm that we use in this work is the

Convolution Neural Network (CNN). This algorithm is used to

perform classification tasks, usually image recognition. Because

they handle multidimensional data, CNNs are composed of

multiple layers which are, more generally, the convolution,

pooling, and fully connected layers. The input data first goes

through the convolution layers where filters are applied to it to

create an activation map. This map is fed to the pooling layer,

which reduces the spatial dimensions of this activation map size,

again, by applying filters, this time to condense regions of the

activation map based on summary statistics. Finally, in the fully

connected layer, the flattened data from the pooling layer is

processed using a fully connected neural network, with multiple

layers of connected neurons mapping the relationship between

input and output [14]. A diagrammatic representation of this

algorithm is shown in Fig. 3 [15].

Fig. 3. Typical CNN architecture

The dataset we use in our experiments is the Modified

National Institute of Standards and Technology (MNIST)

dataset [16], which is composed of handwritten digits from 0 to

9. A total of 49,800 samples were used for training, 10,200 for

validation, and 10,000 for testing. Being images, we used a 2-

Dimensional CNN model to process the data.

C. Attack Model and Mitigation

We have taken the following cyber attacks into consideration

when designing and developing our proposed BlockFL system.

1. Data poisoning attacks, where malicious nodes inject

false data to corrupt the global model [3], are mitigated

through the immutable audit trail provided by the

blockchain, enabling collective verification and

rejection of anomalies.

2. Model replacement attacks, where a node attempts to

control the global model [3], are countered by the

decentralized ledger and Proof-of-Work consensus

mechanism, making it impractical for any single node

to manipulate the model.

3. Eavesdropping on the communication channels [17],

which is generally common in wireless networks, are

addressed by keeping data on local devices and only

transmitting model parameters, with the blockchain

providing secure, tamper-proof storage and controlled

access, thus enhancing security and privacy protection

compared to the traditional centralized systems.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

The Python PyTorch library was used to implement CNNs

in our experiment. Client nodes and the server’s Global Model

were both run on the Google Colab, and they were run on a

dedicated VM in Google Compute Engine (GCE). The MNIST

training data was divided by the number of total clients, and each

client had some portion of the data loaded on to it. Each client

was also assigned a unique ID.

We constructed a Python class to implement our blockchain

mechanisms, specifically using the hashlib library to implement

SHA-256 hashes for block creation, validation, and conflict

resolution using PoW. To allow the other components in our

system to interface with the blockchain over network, we used

Flask to develop an API to handle HTTP requests to the

blockchain. Requests were formatted using JSON, which meant

to ensure compatibility with the format, tensors containing

model parameters needed to be converted into byte strings

before being sent as transactions to the blockchain in the global

model and local client’s code.

Because the global model and blockchain exist on the same

layer – the server layer – the global model is allowed to know

more details about the blockchain than local clients, and gets to

requests when a block should be mined upon certain conditions

being met, similar to the way smart contracts work in Ethereum

[18].

The code for our blockchain and API was hosted on Replit,

which not only assigns a dedicated VM for it, but also a URL

where HTTP requests can be made to the API. This allowed us

to keep our API running live, and as a separate module/service

from the global model, something that was necessary as model

training and blockchain hosting cannot be done simultaneously

in the same runtime environment.

B. Experimental Results

We ran six experiments with a different number of clients

each time: a 2-, 4-, 8-, 16-, 32-, and 64-client test. For each

experiment, 20 rounds of training were performed. From each

experiment, we collected performance metrics of the aggregated

global model, specifically its accuracy, loss, precision, recall,

and F1 score during the validation. We also collected data about

the communication overhead generated in each experiment, and

the global model’s final performance on the test data at the end

of the 20 rounds. For comparison purposes, we ran 20 rounds of

training on a centralized CNN model using no federated learning

as our baseline for comparison, helping us see the differences in

training and performance between the regular machine learning

and federated learning.

Fig. 4 and 5 show the performance of the aggregated global

model for each test compared with the baseline model. Table 1

shows each final model’s performance on the test data. Fig. 6

shows the communication overhead generated during each of

our tests.

Fig. 4. Loss and accuracy comparison

Fig. 5. Precision, recall, and F1 score comparison

TABLE I. FINAL MODEL PERFORMANCES ON TEST DATA

Model
Performance Metrics

Accuracy Loss Precision Recall F1 Score

2-Client 0.9874 0.0372 0.9871 0.9878 0.9875

4-Client 0.9873 0.0392 0.9873 0.9878 0.9875

8-Client 0.9832 0.0536 0.9828 0.9834 0.9831

16-Client 0.9771 0.0742 0.9769 0.977 0.977

32-Client 0.9656 0.1165 0.9661 0.9659 0.966

64-Client 0.9505 0.1853 0.951 0.9503 0.9506

Baseline 0.9875 0.0441 0.9875 0.9878 0.9877

Fig. 6. Communication overhead for each federated learning model

These results show that even with an increasing number of

clients, the federated learning model in our system still performs

well. For all experiments, the global model was able to achieve

a validation loss of 0.25 or less within 20 rounds of training,

albeit slower than what it took the baseline to achieve such loss,

with the 64-Client test’s final model having the largest loss

during testing. These numbers are all generally comparable to

the performance of the baseline model, with the 2-Client and 4-

Client models even slightly outperforming the baseline in terms

of loss. It may take more rounds of training to reduce the loss as

the number of clients increases, but this is still within a

reasonable number of rounds. We also noticed, rather

interestingly, that as the number of clients increases, the

smoothness of all the curves also increases up to a certain

threshold. Going from the baseline to the 8-client curves, the

baseline model produced the “bumpiest” curve, however,

beyond 8 clients, the curves start being bumpy again. This

indicates that our system may be less susceptible to noise than a

non-federated-learning-based system since by training and

averaging multiple models, faults that a single model may have

in its parameters will become less dominant. However, once data

begins to be spread too thinly among the clients, noise may be

reintroduced.

Finally, the communication overheads increased as the

number of clients increased. Looking at the breakdown of

communication overhead, while the overhead generated by the

server remained almost constant for each test, the client

generated overhead increased dramatically, which in turn

increased the total overhead for that test. In the real world where

data may not be in the same place before training, there would

still be communication overhead in transmitting data to the

central server, which may be increased by the need for secure

protocols. Even if our entire dataset was transmitted using the

best lossless compression technique, which would achieve a

compression ratio of 3:1 [19], it would still be 18 MB altogether,

so we are assuming this as the minimum communication for our

baseline. Therefore, we believe that the communication

overhead of our federated learning models would still be better

than the overhead incurred by transmitting the raw data instead.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have compared our BlockFL system to a

typical non-federated-learning-based system with respect to the

model performance and the communication overhead. However,

when it comes to security, we made the assumption that the

inherent mechanisms of blockchain would ensure security of the

data in our network, and that being a private blockchain, the

clients and server would be verified to participate in the learning

process beforehand. Yet, even with the use of federated learning

and blockchain, security would still possibly remain an issue,

and the proper measures must be taken to address it.

Additionally, we have also made the assumption that

mechanisms will be in place to enforce the proper coordination

of server and clients which is required by the federated learning.

While we manually coordinated some of the server and client

activities in our work, further procedures are required to ensure

the server and clients coordinate as intended in this process.

To implement more robust security measure, some system

that maintains a database of registered clients and asks clients to

validate themselves before sending a transaction, whether that is

a password or some other private key, can be used to prevent

unwanted parties from sending the model transactions through

the network. The server could also check the list of pending

transactions and remove any that originates from the unwanted

parties. In either case, however, this has implications on

communication and computational overhead, as well as the

decentralized nature of the blockchain. Because the global

model has many privileges like checking the blockchain’s

pending transactions and being able to decide when to mine a

block, there must be extra measures taken to ensure only the

global model can perform these actions, including validating

that such requests originate from the global model in the first

place. As for the future direction, we would like to integrate the

aforementioned attacks into our experiments, and check how

they affect the performance of the proposed approach. We

would also like to experiment with a larger amount of client

nodes to test the scalability of our system in schemes like IoVs.

Thus, these issues remain open to future research.

In summary, we proposed the BlockFL system, which

integrates blockchain into federated learning. In this system, the

global model and client essentially communicate their model

parameters using the blockchain. The blockchain is used to store

model parameters from both the global and local models during

the coordinated federated learning process, providing a secure

means of storage on top of the data privacy offered by not

moving data from its source device. Additionally, it provides a

means of archiving model parameters for purposes like reverting

model versions or tracking client participation. Such an

integration overall enhances the privacy of participating parties

in a decentralized, transparent manner. To demonstrate the

capabilities of the system, we implemented a prototyped system

and conducted experiments comparing the performance of its

ML model at differing numbers of clients, as well as to a non-

federated, baseline model. The results show that our system is

able to maintain a solid performance even with an increasing

number of participating client nodes, and performs comparably

to a non-federated model, even overperforming the baseline in

some instances.

ACKNOWLEDGMENT

We would like to thank Kaggle user Puru98 [20] for making
the PyTorch implementation of federated learning public, which
we adapted for this research. We would also like to thank
software engineer Bimo Putro Tristianto for his tutorial on
creating a blockchain with Python [21], which we used to
implement a blockchain for this work.

REFERENCES

[1] K. D. Foote, “A brief history of the internet of things -
DATAVERSITY,” DATAVERSITY, Mar. 28, 2023.
https://www.dataversity.net/brief-history-internet-things/

[2] L. U. Khan, W. Saad, Z. Han, E. Hossain and C. S. Hong, "Federated
Learning for Internet of Things: Recent Advances, Taxonomy, and Open
Challenges," in IEEE Communications Surveys & Tutorials, vol. 23, no.
3, pp. 1759-1799, 2021, doi: 10.1109/COMST.2021.3090430.

[3] A. Panda, S. Mahloujifar, A. N. Bhagoji, S. Chakraborty, and P.
Mittal, “SparseFed: Mitigating Model Poisoning Attacks in Federated
Learning with Sparsification,” arXiv.org, Dec. 12, 2021.
http://arxiv.org/abs/2112.06274

[4] V. Gupta, “A brief history of blockchain,” Harvard Business
Review, Mar. 29, 2024. https://hbr.org/2017/02/a-brief-history-of-
blockchain

[5] L. Zhang, X. Li, Q. Wu, and F. Rezaeibagha, “Blockchain-Aided
anonymous traceable and revocable access control scheme with dynamic
policy updating for the cloud IoT,” in IEEE Internet of Things Journal,
vol. 11, no. 1, pp. 526–542, Jan. 2024, doi: 10.1109/jiot.2023.3287190.

[6] H. Zhang, J. Liu, H. Zhao, P. Wang and N. Kato, "Blockchain-Based
Trust Management for Internet of Vehicles," in IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 3, pp. 1397-1409, 1 July-Sept.
2021, doi: 10.1109/TETC.2020.3033532.

[7] W. Li and H. Song, "ART: An Attack-Resistant Trust Management
Scheme for Securing Vehicular Ad Hoc Networks," in IEEE Transactions

on Intelligent Transportation Systems, vol. 17, no. 4, pp. 960-969, April
2016, doi: 10.1109/TITS.2015.2494017..

[8] C. Zhang, W. Li, Y. Luo and Y. Hu, "AIT: An AI-Enabled Trust
Management System for Vehicular Networks Using Blockchain
Technology," in IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3157-
3169, March 1, 2021, doi: 10.1109/JIOT.2020.3044296..

[9] Z. Zhang, J. Li, S. Yu, and C. Makaya, “SAFELearning: Secure
aggregation in federated learning with backdoor detectability,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 3289–
3304, Jan. 2023, doi: 10.1109/tifs.2023.3280032.

[10] M. Vucovich, D. Quinn, K. Choi, C. Redino, A. Rahman and E.
Bowen, "FedBayes: A Zero-Trust Federated Learning Aggregation to
Defend Against Adversarial Attacks," 2024 IEEE 14th Annual
Computing and Communication Workshop and Conference (CCWC), Las
Vegas, NV, USA, 2024, pp. 0028-0035, doi:
10.1109/CCWC60891.2024.10427896.

[11] W. Li, G. Chen, X. Zhang, N. Wang, D. Ouyang, and C. Chen,
“Efficient and secure aggregation Framework for Federated Learning-
Based spectrum Sharing,” in IEEE Internet of Things Journal, p. 1, Jan.
2024, doi: 10.1109/jiot.2024.3357575.

[12] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito,
“Blockchain and IoT Integration: A Systematic survey,” Sensors, vol. 18,
no. 8, p. 2575, Aug. 2018, doi: 10.3390/s18082575.

[13] Y. Yun, “Proof of work: what is it, and how does it figure into
bitcoin halving?,” Forkast, Jan. 21, 2022. [Online]. Available:
https://forkast.news/proof-of-work-what-is-it-bitcoin-halving/

[14] M. Mishra, “Convolutional neural networks, explained - towards
data science,” Medium, Dec. 15, 2021. [Online]. Available:
https://towardsdatascience.com/convolutional-neural-networks-
explained-9cc5188c4939

[15] V. H. Phung and E. J. Rhee, “A High-Accuracy Model average
ensemble of convolutional neural networks for classification of cloud
image patches on small datasets,” Applied Sciences, vol. 9, no. 21, p.
4500, Oct. 2019, doi: 10.3390/app9214500.

[16] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges, “The
MNIST Dataset”. [Online]. Available: http://yann.lecun.com/exdb/mnist/,
last visited May 27, 2024.

[17] K. N. Kumar, C. K. Mohan, and L. R. Cenkeramaddi, “The impact
of adversarial attacks on federated Learning: a survey,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20,
Jan. 2024, doi: 10.1109/tpami.2023.3322785.

[18] I. Berman et al., “Trustable environmental monitoring by means of
sensors networks on swarming autonomous marine vessels and
distributed ledger technology,” Frontiers in Robotics and AI, vol. 7, May
2020, doi: 10.3389/frobt.2020.00070.

[19] Handbook of Image and Video Processing. 2005. doi:
10.1016/b978-0-12-119792-6.x5062.

[20] Puru98, “ Federated Learning (PyTorch)”,
https://www.kaggle.com/code/puru98/federated-learning-pytorch, last
visited August 7, 2024.

[21] Bimo Putro Tristianto, “Build your own blockchain in Python: a
practical guide”, https://bimoputro.medium.com/build-your-own-
blockchain-in-python-a-practical-guide-f9620327ed03, last visited on
August 7, 2024.

